

ALUPE UNIVERSELY

P. O.Box 845-50400 Busia(K) principal@auc.ac.ke Tel: +254 741 217 185 +254 736 044 469

... Bastion of Knowledge .

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS 2019 /2020 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION ARTS

COURSE CODE:

MAT 111

COURSE TITLE:

GEOMETRY AND ELEMENTARY

APPLIED MATHEMATICS

DATE:

TIME:

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF 4 PRINTED PAGES

PLEASE TURN OVER

REGULAR -MAIN EXAM

MAT 111: GEOMETRY AND ELEMENTARY APPLIED MATHEMATICS

STREAM: BSc ASC DURATION: 3 Hours

INSTRUCTION TO CANDIDATES

- i. Answer ALL questions from section A and any THREE from section B
- ii. Do not write on the question paper.
- iii. Take $g = 9.8m/s^2$

No sharing of scientific calculators.

Do not write on this question paper.

SECTION A (31 MARKS): ANSWER ALL QUESTIONS

QUESTION ONE (16 MARKS)

- a) Define a force. (2 marks)
- b) Show that the points A(-1,-2), B(4,-1), C(5,4) and D(0,3) are vertices of a rhombus. (3 marks)
- c) Find the equations of the lines that have the tangents to the curve $y = x^3 6x + 8$ and parallel to the line y = 6x 2. (6 marks)
- d) Find the equation of the common cord of two circles given by

$$x^{2} + y^{2} - 4x - 2y + 1 = 0$$

$$x^{2} + y^{2} + 4x - 6y + 10 = 0$$

 $x^2 + y^2 + 4x - 6y + 10 = 0$ (2 marks)

e) Find the parametric and Cartesian equation of A(2,1,1) and B(0,5,3) . (3 marks)

QUESTION TWO (15 marks)

- a) Find the Cartesian equations for the line passing through (2,-9,5) and parallel to the vector $\vec{V} = 3\hat{i} \hat{j} + 4\hat{k}$ (2 marks)
- b) Find all asymptotes of the following function $y = \frac{x+3}{x^2+9}$.

(2 marks)

- c) A motor car is uniformly retarded and brought to rest from a speed of 100km/h in 20 sec. find its acceleration. (3 marks)
- d) Express the following in rectangular coordinates, $r^2 = 1 + \sin \theta$ (2 marks)

e) Find the area of the triangle whose vertices are A(1,-1,0), B(2,1,-1), and C(-1,1,2). (6 marks)

SECTION B – ATTEMPT THREE QUESTIONS IN THIS SECTION

QUESTION THREE (13 marks)

- a) Find the equation of the line perpendicular to the line 4x + 5y + 7 = 0 and passing through the point (6,-5). (3 marks)
- b) Find the distance of the point (0,4) from the line 2x + y 7 = 0 (2 marks)
- c) Locate the Centre of mass of the system having the coordinates (2m,0m), (6m,0m) and (6m,2m) with the masses 5kg, 10kg and 15kg respectively. (5 marks)
- d) Find the distance between (-3,2,4) and the plane 2x + y + 2z = 12. (3 Marks)

QUESTION FOUR (13 marks)

- a) Write an equation of the tangent at the point (2,2) to the curve $x^2 2xy + y^2 + 2x + y = 0$ (5 marks)
- b) Find the radius and the Centre of the circle with the equation $4x^2 + 4y^2 + 12x 16y = 11$ (5 marks)
- c) Express the given equation in polar coordinates, $(x + y)^2 = x y$ (3 marks)

QUESTION FIVE (13 marks)

- a) Find the unit vector perpendicular to the vectors $\vec{A} = 2\hat{i} + \hat{j} \hat{k}$ and $\vec{B} = \hat{i} \hat{j} + 2\hat{k}$. (4 marks)
- b) Find the angle between the lines given by $\frac{x-4}{2} = \frac{y-1}{2} = \frac{z-1}{1}$ and $\frac{x-3}{3} = \frac{y+5}{-4} = \frac{z-6}{5}$ (5 marks)
- c) A stone is thrown vertically upwards with an initial speed of 16m/s. Neglecting Air resistance, find,
 - (i) The maximum height reached, (2 marks)
 (ii) The time taken before it reaches the ground. (2 marks)

QUESTION SIX (13 marks)

- a) Find the equation of the plane via the point (2,1,7) and perpendicular to the line joining it at the point (2,3,1). (3 Marks)
- b) Calculate the maximum height reached by a particle that has been fired with initial velocity 540km/h at an angle of elevation of 45° after 10 sec. How far away will the projectile be above the land? (6 marks)
- c) A bock of mass 50kg lies in a rough surface which is horizontal. The coefficient of friction being $\frac{1}{5}$ find,
 - (i) The maximum horizontal force, (2 marks)
 - (ii) The acceleration of the block if twice the minimum force is applied. (2 marks)

QUESTION SEVEN (13 marks)

- a) Find k to show that the planes (k+1)x y + (2-k)z = 0 is perpendicular to the plane 2x + 6y z + 13 = 0 (4 marks)
- b) Find the points of intersection of the curve r = 1 and $r = 2\sin\theta$ (3 marks)
- c) Find the acute angle between the planes 2x 4y + z = 5 and y + 3z = 2 (3 marks)
- d) Show that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$. (3 marks)