

ALUPE UNIVERSITY

OFFICE OF THE DEPUTY VICE CHANCELLOR

ACADEMICS, RESEARCH AND STUDENTS' AFFAIRS

UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER REGULAR MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION ARTS/SCIENCE

COURSE CODE:

MAT 216

COURSE TITLE:

REAL ANALYSIS I

DATE:

20TH DECEMBER 2023

TIME:

9.00AM-12.00PM

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF 3 PRINTED PAGES

PLEASE TURN OVER

INSTRUCTIONS TO CANDIDATES

- i. Answer ALL Questions from section A and ANY from section B.
- ii. Do not write on the question paper.

SECTION A (31 Marks)

Answer ALL questions in this section.

QUESTION ONE (16 Marks)

- a) Define the following terms
 - i) Interior point

((Mark)

ii) Exterior point

(1 Mark)

iii) Boundary point

(5 Marks)

b) Show that for every x, with |x| < 1, $\lim_{n \to \infty} nx^n = 0$ c) Apply the integral test to the series $\sum_{n=1}^{\infty} \frac{n}{n^2+1}$.

(5 Marks)

d) Discuss the convergence of the harmonic series.

(3 Marks)

QUESTION TWO (15 Marks)

a) Show that the $\lim_{n \to 2} x^2 = 4$.

- (5 Marks)
- b) Prove that a monotone sequence converges if and only if it is bounded.
- (5 Marks)

c) Let $x, y \in \mathbb{R}$, prove that $||x \cdot y|| = ||x|| ||y||$.

(5 Marks)

SECTION B (39 Marks)

Answer ANY THREE questions.

QUESTION THREE (13 Marks)

- a) Let $f: X \to Y$ and $g: Y \to Z$ such that $ran(f) \subseteq dom(g)$, show that
 - If f and g are onto then so is the composition function $g \circ f$. (3 Marks)
 - (Dividina)
 - ii) If f and g are one-to-one then so is the composition function $g \circ f$. (4 Marks)
- b) Prove that a sequence $\{x_n\}$ converges to zero if and only if the sequence $\{|x_n|\}$ converges to zero. (6 Marks)

QUESTION FOUR (13 Marks)

a) Show that the sequence $\{S_n\} = \frac{n+1}{n}$ is a Cauchy sequence.

(7 Marks)

b) Let $\{s_n\}$ be the sequence which converges to s. Prove that any subsequences of $\{s_n\}$ converges to s. (6 Marks)

QUESTION FIVE (13 Marks)

- a) Let $\{s_n\}$ and $\{t_n\}$ be sequences of real numbers which converges to s and t respectively. Prove that $\lim_{n\to\infty} s_n \cdot t_n = s \cdot t$. (8 Marks)
- b) Show that $\lim_{n \to \infty} \sqrt[n]{n} = 1$. (5 Marks)

QUESTION SIX (13 Marks)

- a) Show that $f(x) = \frac{1}{x}$ is continuous at x = 1. (6 Marks) b) Prove that if two sets A and B are open then $A \cap B$ is open. (5 Marks)
- c) State the least upper bound property of a set $S \subseteq \mathbb{R}$. (2 Marks)

QUESTION SEVEN (13 Marks)

- a) Prove that given two sets A and B, if A = B then $(A \subseteq B) \land (B \subseteq A)$. (6 Marks)
- b) Prove that if a series $\sum |a_n|$ converges then the series $\sum a_n$ converges. (4 Marks)
- c) Prove that a non-empty subset S of an ordered field φ can have at most one least upper bound. (3Marks)