

ALUPE UNIVERSITY OFFICE OF THE DEPUTY VICE CHANCELLOR ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS 2023 /2024 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE/ARTS

COURSE CODE:

MAT 113

COURSE TITLE:

DIFFERENTIAL CALCULUS

DATE: 11th December 2023

TIME: 2:00PM-5:00PM

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF 4 PRINTED PAGES

PLEASE TURN OVER

REGULAR - MAIN EXAM

MAT 113: DIFFERENTIAL CALCULUS

STREAM: Bed (Sc/Arts/Bus)

DURATION: 3 Hours

INSTRUCTION TO CANDIDATES

- i. Answer ALL questions from section A and any THREE from section B
- ii. Do not write on the question paper.

SECTION A (31 MARKS): Answer all questions in this section.

QUESTION ONE (16 MARKS)

a) Find
$$\frac{dy}{dx}$$
 for $x^3 + 3x^2y + y^3 = 1$ (3 Marks)

c) Find the nature of the turning points on the curve
$$y = x^3 - 3x^2 + 2$$
 (4 Marks)

d) Given that
$$f'(x) = 6x^2 + 6x - 4$$
 and $f(1) = 3$. Find $f(x)$ (4 Marks)

e) Evaluate
$$\frac{d}{dx}(\sinh x)$$
 (3 Marks)

QUESTION TWO (15 MARKS)

f) Differentiate
$$y = \sin^2 x$$
 (2 Marks)

g) Find velocity and acceleration when
$$t = 0$$
 given that $s = 12t - 4t^2$ (4 Marks)

h) Differentiate
$$y = x^x$$
 (2 Marks)

i) Find
$$\frac{dy}{dx}$$
 for $y = \frac{1}{\left(x^2 + 3x + 5\right)^3}$ (4 Marks)

j) Consider the function
$$f(x) = \begin{cases} 2x - 1 & , & x < 3 \\ 8 - x & , & 3 \le x \end{cases}$$
. Proof that f is continuous at x=3.

(3 Marks)

SECTION B: (39 MARKS)

QUESTION THREE (13 MARKS)

- a) Differentiate
 - i) $f(x) = (7+x)^2$

(3 Marks)

ii) $\sin^2 x \cos x$ with respect to x.

b) Show that: $\lim_{x\to 0} \frac{\cos x - 1}{x}$ is egual to zero.

c) Evaluate $sin^{-1}\left(\frac{1}{2}\right)$

QUESTION FOUR (13 MARKS)

Given that: $f(x) = \frac{x+2}{x+1}$. Find all the values of c in the interval (1, 2) such that:

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
 where $a = 1$ and $b = 2$ (5 Marks)

The distance s metres moved by a body in t seconds is given by

$$s = 2t^3 - 12t^2 + 24t + 10$$
; Find the

i) velocity when t = 4

ii) value of t when the body comes to rest

iii) value of t when the acceleration is 10m/s

QUESTION FIVE (13 MARKS)

a) Differentiate the following with respect to x

i)
$$y = x\sqrt{x} + 3$$

(2 Marks)

ii)
$$x \sin y = y \sin x$$

(2 Marks)

iii)
$$y = \ln \frac{x^2 + 1}{x^2 - 1}$$
 if $x \in \mathbb{R} \setminus \{1, 1\} \setminus \{1, 1\}$

(2 Marks)

b) Find the tangent to the curve
$$y = 2x^3 - 4x^2 + 2$$
 at (1,1)

(3 Marks)

c) If
$$x = a(t^2 - 1)$$
, $y = 2a(t + 1)$, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ in terms of t (4 Marks)

QUESTION SIX: (13 MARKS)

- a) Evaluate the limits
 - i) $\lim_{z \to 0} \frac{\sin(10z)}{z}$ (3 Marks)
 - ii) $\lim_{x \to 0} \frac{\sin(12x)}{\sin(5x)}$ (3 Marks)
- b) Differentiate the following functions
 - i) $y = \frac{2x+3}{\sin 4x}$ (4 Marks)
 - ii) $y = \ln(1 2x)^3$ (3 Marks)

QUESTION SEVEN (13 MARKS)

- a) A plane is flying directly away from you at 500 mph at an altitude of 3 miles. How fast is the plane's distance from you increasing at the moment when the plane is flying over a point on the ground 4 miles from you

 (7 Marks)
- b) If $f(x) = \begin{cases} \frac{x^3 + x^2 16x + 20}{(x 2)^2}, & x \neq 2 \\ k, & x = 2 \end{cases}$ is continuous at x = 2, find the value of k

(6 Marks)